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Abstract A new way of solving the steady-state coupled radiative-conductive problem in semi-
transparent media is proposed. An angular discretization technique is applied in order to express
the radiative transfer equation (RTE) in an inhomogeneous system of lLnear differential
equations associated with Dirvichlet boundary conditions. The system is solved by a direct method,
after diagonalizing the characteristic matrix of the medium. The RTE is coupled with the
nonlinear heat conduction equation. A simulation of a real semi-transparent medium composed
of silica fibers is illustrated. Comparison with results of other methods validates the new model.
Moreover, the general scheme is easy to code and fast. The algorithm proved to be robust and
stable.

Nomenclature
y = distance, m os = spectral scattering coefficient, m™
E = medium thickness, m o = spectral extinction coefficient, m™
T = temperature, K osP{ = scattering geometry
T, = boundary temperature at the 7 = angular direction s
abscissa 0, K p = medium density, kg/m
Tr = boundary temperature at the
abscissa E, K .
_ S . Subscripts
L, = spectral radiation intensity, = .
3 a = absorption
Wi(m'sr) s = scatterin
Lg = spectral radiation intensity emitted o g
3 e = extinction
by a black body, W/m e
. . r = radiative
P; = spectral phase function _ .
- - 2 c = conductive
@, = heat flux by radiation, W/m _
€ = heat flux by conduction, W/m® E\ ; xgerlllochromatic
Q; = total heat flux, W/m?
S, = radiative term source
A = wavelength, um Superscripts
Ac = thermal conductivity, W/m-K +, — = in the positive or negative y-direction
ogs = Spectral absorption coefficient, m™ 0 = relating to the black body
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1. Introduction

Radiative heat transfer coupled with conduction through semi-transparent media
is the subject of a large number of studies because of its multiple practical
applications, especially in thermal insulation. Many theoretical studies have been
devoted to the solution of RTE in semi-transparent absorbing and isotropic
scattering media (Kelley, 1996; Banoczi and Kelley, 1998; Larsen and Nelson,
1982; Pitkaranta and Scott, 1983) and recently, for a non-grey participating
medium with anisotropic scattering (Boulet ef al., 1993). The works carried out in
our laboratory (Boulet et al., 1993; Guilbert et al., 1987) give access to the three
coefficients characterising the radiative transfer: the spectral absorption
coefficient o, (1), the spectral diffusion coefficient o) (1) and the spectral phase
function P;(y — p). These coefficients intervene in the RTE. In particular, a
computer program has been developed for the calculation of these coefficients.

Boulet et al. (1993) studied, within this context, the combined radiative and
conductive heat transfer in a medium with axial symmetry and composed of
silica fibers randomly oriented in planes parallel to the boundaries. These latter
are held at fixed temperatures. These authors used a model known as “two-
streams” in which the RTE is formulated in an inhomogeneous system of linear
differential equations associated with Dirichlet boundary conditions. A
convenient method for solving homogeneous systems is a matrix exponential
method, but a direct application is numerically unstable. Therefore, Boulet et al.
(1993) solved the homogeneous system using two characteristic matrices
representative of transmission and reflection by a layer of given thickness
(Waterman, 1981; Flateau and Stephens, 1988). These matrices were computed
by a process called the “doubling” and “adding” method. After initialization of the
starting matrix for a layer of very small thickness, it consists of calculating
transmission and reflection matrices for layers of increasingly significant
thickness in an iterative way. A particular solution of the system is obtained in
polynomial form. This present paper continues this research work. The medium
is non-grey, hence the RTE is a spectral equation, which must be solved over the
whole spectrum. A fast method thus needs to be developed in order to solve this
equation because of the long computing times. The previous method gives
satisfactory results but the computing times are very long, primarily related to
the initialization of the transmission and reflection matrices. Moreover, it cannot
be extended to the transient-state because of the particular solution. In the
transient-state, there can be very fast variations of temperature and in this case,
one cannot seek a suitable particular solution in polynomial form. A preceding
study led us to solve the system by a backward-forward finite difference scheme
(Asllanaj et al., 2000). This method was found to be satisfactory based on the
results and speed in the case of the steady-state using a uniform mesh.

In section 2, we present the equations governing the simultaneous steady-state
radiative-conductive heat transfer, in a semi-transparent medium. In section 3,
we present the angular discretization technique that allows expressing the RTE
as an inhomogeneous system of linear differential equations. We show then how
the diagonalizing procedure of the characteristic matrix of the medium makes it



possible to circumvent the numerical instability problem. In section 4, the method
1s tested on a real semi-transparent medium and results are compared with those
obtained by preceding models. Finally, in the last section, we discuss the special
interest of this method in the transient-state.

2. Formulation of the problem

We consider the equations for radiative-conductive heat transfer through a
planar fibrous medium. The domain is supposed to be homogeneous. The
unknowns are the radiation intensity L) (v, i) referred to the wavelength ), at a
point y, in the direction p and the temperature 7'(y) at position y. For a non-
grey, absorbing, emitting and anisotropically scattering medium of thickness
E, assuming transfer in the y-direction, with an axial symmetry, the RTE, as
described in Modest (1993), Siegel and Howell (1992) and Ozisik (1973), is

- 0 ) L) — o) - Ly, )

Oy
1 (1)

~ J 0P = 1) - La(v, i)
|

DN —

_l’_

for 0 <y < E, pe[—1,1]{0}, A > 0. u is the cosine of the polar angle between
the directions of propagation and transfer. In this equation, the terms on the right
hand side describe respectively internal emission, extinction phenomena and the
intensity of the scattering in the p-direction. LS(7'(v)) is the monochromatic
intensity of the black body at temperature 7, given by Planck’s law as

G

LYT) = 2
where Cy and G, are two constants of the radiation
Cr =1.19-10%W/m* and C, = 1.4388-10?m - K (3)

The monochromatic extinction coefficient is o, = o4\ + o5y
The coefficient o, P represents the scattering geometry and is defined by

asP5 (1 — 1) = o () pa(p' — 1) Vp, p'e[=1, 1]\ {0} (4)

where P; is the spectral phase function. The function y — 3- P{(i/ — p) is a
probability density on [-1,1]\{0} which verifies
1
| P = =1 6)
-1

DN —

In addition, coefficients o, o,y and o,P5 in (1) are strictly positive.
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The boundary surfaces at y =0 and y = E are both black surfaces kept at
uniform temperatures 7, and Tf respectively. Then the radiative boundary
conditions (see (Ozisik, 1973)) are

L0, ) = LY(T,) for 0 < p<1

0 (6)
Ly(E, p) =Ly(Tg) for —1<pu<0
The temperature T satisfies the nonlinear energy equation
d dT
—@(AC(T@)) ‘d—y(y)) =S() (7)
for 0 <y < E with Dirichlet boundary conditions
TO0)=1T,, T(E)=Tg (8)
and coupling to the radiative transfer by the radiative source term
d
Siy) =- & (@) )
with
00 1
Q) =2 | [ L n dp-dx (10)
A=0 p=-1

@, is the radiative heat flux and L, (v, ut) is determined from the solution of the
radiative transfer equation (1). The conductive heat flux is defined by

Q) = ~M(TH)) ‘fl—f@) 0<y<E a1)

In equations (7) and (11), A.(7'(v)) is the thermal conductivity of the medium
which depends on temperature. The heat transfer by conduction was calculated
from Fourrier’s law using a semi-empirical expression for the conductivity,
developed for fibrous insulators made of silica fibers. It is based on
experimental data obtained from a guarded hot plates apparatus at the Saint
Gobain Research Center (Langlais and Klarsfeld, 1985)

MT)=a- T +b-T+c (mW/m-K) (12)

where @ =0.2572; ¢ =0.0527-p°°' b =0.0013-cand T is the medium
temperature (K) and p the medium density (kg/m?>).

In addition, thermal conductivity being strictly positive whatever the
temperature, equation (7) is not degenerate.



Total heat flux is given by the sum of radiative and conductive flux

Qt - Qr + Qc (13)
From equations (7), (9), (11) and (13), we have
LQO) =0 VO<y<E (14)

We point out that the numerical method used to solve the coupled problem, that
we detail in the following, will lead to a solution with this property.

3. Resolution of the radiative transfer equation
In this section, we are interested in the RTE discretization which involves three
distinct problems:

(1) angular discretization;
(2) space discretization; and
(3) spectral discretization.

3.1 Angular discretization

Space is divided into s sectors and {y;},”, denote the discrete angular
directions where 0 < p; <1 for 1<:<m/2 and p = —py1; for
m/2+ 1 < i < m. The resulting angular discretization of the RTE led us to
write the following linear differential system as (Asllanaj et al., 2000):

DO )+ 6 0) (15)

where L, is the spectral radiation intensity vector of dimension » formed of the

two vectors L} and Ly
Ly () ]
L\y)= |72 16
0= P (16)
L} and L} are two radiation intensity fields of dimension m/2. They are linked
to the “front” 0 < p < 1) and “back” (—1 < p < 0) hemispheres (Figure 1)

L;\F(y) = [L/\(ya /’Li)]lgigmﬂ and LX(y) = [LA(-yv _:ui)]lgigm/Z (17)

@@3 (v) is the emission vector specific to the medium of dimension  defined by

&0 =] 5.0 (18)

where &5 (v) is a column vector of dimension 722/2 given by
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Figure 1.

Radiation intensity at
boundaries and within
the medium
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&) = [”“ff"') -LK(T@))] (19)

i 1<i<m/2

The symmetry properties, as in (Asllanaj et al., 2000), lead to a constant square
matrix A of dimension m defined by

Al A2
w- i @
where A} and A3 are two square matrices of dimension 72/2 of elements
1
(AV)j == { Pl — i) = oex(py) - &5} and
" (21)
(43); = Pl = =)
1

forzandj = 1....m/2 (i is the row index and j is the column index).
The monochromatic coefficients P(u; — p) take into account the
scattering factors and the integration weights:

1 .
=5 0sPX (1 — pi) - sin (6;) - G

Pr(pj — i) 2

(22)
0<(<1V1<j <m and G are integration weights related to the
numerical integration. §; are space polar directions such that #; = cos(6;)with
0; € 10, [\{3}. ,
In addition, from equations (4), (5) and (22)
i sin (6;) - G
S Py — ) ()G
i=1

= oa(w) +7 (23)

sin (6) - G

where 7 is a real, which represents the integration error. In our case, a composite



Newton-Cotes rule was used to discretize the integral term and » = cte - A6°
where cfe is a constant and A¢ = - is the constant integration step.
The discrete radiative boundary conditions are

Ly(0, 1) =L3(T,)  for 1<i<m/2

L\(E, —p) = L3(Tp) for 1<i<m/2 29

The system (15) is associated with Dirichlet boundary conditions (Figure 1):
L3(T,) L5(Tk)
: and L, (E)= : (25)

Ly (0) = :
L3(To) L3 (Tk)

3.2 Space discretization

The first-order linear inhomogeneous ODE system with constant coefficients
(15) can be solved in an analytical way. The general principle of resolution is
well known: it consists in solving the associated homogeneous system and
seeking a particular solution of the general system. The general solution of the
system is obtained by summation of the two preceding solutions. Thus, let L,
be the general solution of the system, L;, the homogeneous solution of the
system and L, a particular solution of the system. In the same way, we have
for the boundary conditions (25)

{ Ly (0) = L;,(0) + L;,(0)
Ly(E) = Ly (E) + Ly, (E)

where L, (0) and L, (0) are homogeneous and particular boundary conditions
at y = 0 respectively. L;, (E) and L,y (E) are homogeneous and particular
boundary conditions at y = E'respectively.

3.2.1 Solution of the homogeneous system. It is about the radiative heat
transfer problem without internal emission:

dLiry)
o Ay - L) (26)

associated with the following radiative homogeneous boundary conditions:

{LZ/\(O) = Lj(O) - L;/\(O) 27)
Lip(E) = Ly (E) — L,(E)
We point out that boundary conditions (27) are not homogeneous in general.

As is well-known, the solution of equation (26) together with the condition
(27) may be written

Lin(y) = exp(Ay -y) - Ky, (28)
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where K, is a constant integration vector of dimension 7 determined according
to the boundary conditions (27) and exp(A4) - ¥) is the exponential of the matrix

(Ax-Y).
Let

where £} (v) 1 < i < 4 are square matrices of dimension /2 and K}, K? two
column vectors of dimension 7/2. We then have

L) = E\») - K} + E3(y) - K3

L) = E}(v) - K} + E\(y) - K3
{ LZA(O) :Ki

Ly (E) = EJ(E) - K} + E\(E) - K3

and

(30)

We can therefore deduce the expression of the vector K, according to
homogeneous radiative boundary conditions

K\ = Lj,(0) and K3 = (E\(E))" - (L, (E) — E{(E) - Lj(0)  (31)

In addition, solution (28) has the semigroup property, i.e.if 0 <y; < Y1 < E
then

Lin(i1) = exp (Ax - 0ix1 — i) - L () (32)

Thus, the solution at point y;; is directly given by the relation (32) if the
solution at the point y; is known.

However, the direct implementation of the solution calculation by
relations (28) and (32), in the form of a computer code is impossible because it
leads to a numerical instability. We will give the explanations by the
elements which will follow. To start, we give some eigenvalue properties of
the matrix A4,.

Proposition 1:if &, is an eigenvalue of the matrix A, associated with the
1
eigenvector [XA} where X}, X2 are two column vectors of dimension /2,

X3
then —¢, is also an eigenvalue of the matrix A associated with the eigenvector
X3
Xt

Proof: we have

A &1 (8] e (8
- -] R X;



or developing the product Numerical

AL X+ 43X = 6] (L) solution
AL X - AL XS = 6 XY (L2)
which is equivalent to
Al X2+ A2 XD = X2 Itiplyi 457
{ A AN Xy = =& X5 multiplying (L) by —1
—A3 X2 AL XY = —¢£ X! multiplying (Ly) by —1
Le.
A ] - e[
A3 —A] X\ xy| o

Proposition 2: if €, is an eigenvalue of the matrix A, associated with the
1

eigenvector [g@} where X}, X2 are two column vectors of dimension /2,
b

then (£,)* is an eigenvalue of the matrix (A} + A%) - (A} — A2%) associated

with the eigenvector (X} — X?) and is also an eigenvalue of the matrix

(A} — A2%) - (A} + A2) associated with the eigenvector (X} + X2).

Proof. we have
A &) 1] _, [0
—A5 - A} X3 X3

Developing the product, we have

{ Axrma - o (L)
—AF X - AR = O X (Ls)
which is equivalent to

{ (A —43) - (X} —X3) = &-(X} +X3) (L) :=(L)+ (L)
AL +47) - (X4 +X5) = & (0 —X5)  (L2):= (L) — (L)

Substituting (L) in (Lg) and (Lg) in (L;), we obtain
(A} +43) - (4] - 45) - (X} —X}) = (&) (X} —X3)
(A} - A7) - (A +4)- (X} +X3) = (&) () +X) O

Proposition 3: 0 1s not an eigenvalue of the matrix A,.
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Proof: let A, be a square matrix of dimension m defined by Ay =G-A,
where G is a diagonal matrix of dimension 7 given by

ui - Sin(el) -

fm/2 - S0 (Opy2) - Gy
—Hm/2 - Sin((gmﬂ) ’ Cm/2

—1 - Sin(91) -G
We first show that the matrix A, is With a strictly dominant diagonal, i.e.
visi<m . |[@y] > & |y

~ =
[(AN)l = [sin(6)) - Gl - [Pa(p — 1) = oex ()]
= (sin(0)) - G) - {oer(rj) — Palpi — 1)}
because 0<sin(f) -G <1V1<j<m,on(y) = o)+ o),

from equation (3), ou\(r) >0 and Pa(yy — 1) < o) V1<j<m
from equations (4) and (22).

m

Z\Aw = > Isin(6) -Gl | PaGs — m) |
l?é] 5;11

m

Z i — ;) - sin(6;) - G

1

since P, is strictly positive from equation (22). In this case
(Sln(ej { Op)\ M] P/\(M] - N] } Z P/\(N] - Nz) Sin(ei) -G

m l#]
= sin(6)) - G - (ar(1j) + osa (1)) — ; Px(pj — ) - sin(6y) - G

= sin(0;) - G - (041(1) — 7) > 0 from equation (23) because » = cte - AG®
and 3Af such that o, (1) —7) > 0V A, J.

The matrix A, being with a strictly dominant diagonal, it is then invertible
and det (4,) # 0. B ~
In addition: det (A)) = det(G™!-A,) = det(G™1) - det(A)) # 0 because

m/2
det (G™1) = (_1)’"/2 11 m # 0 which proves that the matrix A
i1 i-sin(6;)-Ci

is invertible and therefore 0 is not an eigenvalue of this matrix. []



Remark 1: for the practical case, which interests us, we determine
eigenvalues of the matrix A, using the Matlab software, which we use for the
program. In our applications, we took m = 12 directions and N\ = 211
wavelengths. We represent on Figure 2, the m/2 positive eigenvalues of the
matrix A, for each wavelength. Those are then real and simples for each
wavelength.

The problem to be solved is mathematically well posed according to the
Cauchy-Lipschitz theorem (Crouzeix and Mignot, 1992). However, it is
numerically badly posed, since the solution is given by an exponential of the
matrix from equation (28) and this matrix admits nonzero, real and positive
eigenvalues, from the propositions 1, 3 and remark 1 (Crouzeix and Mignot,
1992). In addition, we point out that the direct calculation of the solution by the
relation (28) will diverge very quickly because the eigenvalues of the matrix A
are very large, according to Figure 2.

In this section, we propose a new method for solving the homogeneous
system (26) using a development based on the diagonalizing technique of the
matrix A,.

If all the eigenvalues of the matrix A, are distinct, A, is diagonalizable.
Then, according to remark 1, this is so in our particular case. By proposition 2,

CRgCIY nhues

0.5k

1.5

Id
(3% ]
o

wavebenglh | mcrons)
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the matrix (A} — A%) - (A} + A3) is also diagonalizable. Its reduction is given
by

(D) =S (AL =A%) (A3 + 4D Sy (33)
where (Dy)? is the diagonal matrix given by (Dy)* = diag [(57;\)2]1 <jemy2 and

S, is the square passage matrix of dimension /2. Reduction of the matrix A4
is given by

1 [ U Ut D, 0 VASVAL
AA_Z[U% vl o -n) |2 2 (34)
where Ul=S\+Wy; U2=S\—Wy; ZL=(Sy) " +(W\) ' Z2 =
(S0 = (W) Wa= (4] +43)- Sy Dyt = (AL~ A7 Sy - Dy
If we take again the solution given by equation (28)

Li\(y) = exp(Ay -y) - K)

and if we substitute the matrix A by its expression given by equation (34), we
have

L) =2 U U] | exe@iy) 0 |24z K
" 4| U; Ul 0 exp(-=Dy-y)| | 22 71| |K?
(35)
Setting
al_l |z z] K
c=lal=i17 2] [ (%)
and
exp,(v) = [ ’\(jg E(i(—y) with Ey(y) = exp(Dy - ») (37)
we then have
Ul U?]
Ly:[A Al -exp,(y)-C 38

Vectorial components of Lj;)(y) corresponding to the front and back
hemispheres are given by

L) =[U, U exp,(v)-Cy and

39
L) = [ U2 UL expy) -Gy (39)



C, is a constant vector of dimension # determined by the boundary conditions
L) =[Uy U)- G and Liy(E) =[ U} U)]-expy(E)-Cy (40)

or
W ] [
[[UE Ul -em®) | 7| LnE) )

Substituting C, given by equation (41) in equation (38), we obtain the radiation
Intensity expression according to the boundary conditions

b= g gh]- om0 e o Aol [0

by A Ui } T €XPy n(E)
(42)
Remark 2: the matrix exp) has the following properties:
(expy()) " = expy(—y) and exp,(x) - exp(y) = exp,(x + )
Then using exp, properties and recalling that
B1.A'=A-B™ (43)

we have:

(U w] (LU U en) |7 [LLO)
Lin(y) = [ Uj\% U:\}] ‘ [ [Uj\% UE} .exp)\/\(E—,’V) ] ' [LZi(E)] )

Developing the matrix expression which must be inverted, we have:
= ~ -1
umr[%(ﬂ[ U} () 1@&@%_{%@]
Uy U, Ui -Ex(E—y) Uy -E\(y—E) L,\(E)
(45)

E,(a)diag (efi"“)l <j<m/2 Where 5&1 <j<m/2, are the strictly positive
eigenvalues of the matrix A . Hence, E,(a)diverges if a is positive. In order to

determine the matrix of equation (45) which must be inverted, we will consider
the matrix E (@) where ¢ will be a negative value.
Remark 3: the matrix E) has the same properties as the matrix exp,.
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HFF In this case,

Lo Ul-Bi-) UGB |
Ui -E\(E—y) Ul-E\y-E)
162 ::{ UV-E-B) U} B(E-2 0 }1
U3 Uy -E\(-E) 0 E\(y)
_ EA(J/ - E) 0 )
0 Ex(—y)
U3 B\(-E) Uéz 1using equation (43).
U? Ul E\(—E)
(46)
Let
B\(y) = Ex(y — E) and B}(y) = Ex(-) (47)

Putting equation (46) in equation (45) and using equation (47), we obtain finally
the expression which makes it possible to calculate the radiation intensity at
any point of the medium without any numerical problem:

Uy Ut Bi(») 0
WO=lw ul | o Byl
) 48)
Ul B\-E) U )

U2 ULE-E)| | Lp®)

Remark 4-

(1) The matrix B& :=1,2 can be calculated by iteration. Indeed, let
0<y < Vi1 < E, then B%\(y,) = E/\(—(y,qu —yi)) . b}\(ym) and
b%\(ylﬂ) = E\(—=(ip1 — i) .Bi(y,').

(2) Inour application, generally Ey(—E) = 0, the zero matrix (see Figure 2).

In this case,
Ub-By-E) U2 1o ®;]_| o (@)
U3 UyE-E)] L0 o] w0 |

(3) Thereduction of the matrix A is brought back in fact to the reduction of
the matrix (A} —A%) - (A} +A%), which reduces the order of the
problem by two. The Matlab software that we use, gives eigenvalues



and eigenvectors of a matrix rather quickly and with very good
precision. The calculation of the matrix E) does not pose a problem
since it is given analytically by the relation

B (—x) = diag(e "), ;s V2 € [0, E].

3.2.2 Particular solution of the system. We now seek a particular solution to the
system with second member:

dLx(y)
dy

= Ay - L) + &0 (49)

Since no obvious solution appears, we use the variation method of the
constants, i.e. we seek a particular solution in the form

Lya(y) = exp (Ax-y) - Ky() (50)

where K, is supposed to be differentiable. K is given by
¥
KA(y):/ exp (= Ay-1)-& (W) du + GV 0<y<E  (51)
0
where C, is an unspecified constant vector of dimension . Generally we fix
C, =0, but here, Cy, plays a significant role and we will choose it in order

to have no numerical instability problem. Then, the particular solution is given
by

y
Lm(y)Z/ exp (Ay- (v —u)) &5 () du + exp (Ay-y)- Gy (52)
0

If we take again the reduced form of the matrix A given by equation (34) and if
we apply it to equation (52), we have

y
Ly =L | B U /[GXP Dr-lp—w) 0 }
Clw vl 0 ep (DY)
77 L2 Dy - 0
Y R o I e B J
7z 7 4 | U3 U 0 exp (=Dx-y)
% XA
-C
7 7 A (53)
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Let
©0,+ 1 2
©0 (1 _ N (u) _1, Zy Zy| o
&\(u) = [ gi(u)] =1 [ Zf Zi &\ (u) (54)
and
~ M+ 1 Zl Z2:|
Co= | | == [ A AL 55
0,— ©0,+ : 0 o (M) :
Then &\ (u) = =& (u) since & (u) = 2o+ () from equation (18).
G
Using equations (54) and (55) in equation (53), we obtain
v N - .
N JE\W —u)- &3 (u) du +E\(y) - Cf
L) = | o Vx| (56)
Wl wl |

- Of W —9) - &5 () du + By(-) - Cy

with E, (v) = exp(D, - ), the matrix defined by equation (37).

Cj are C;, constant vectors of dimension /2 that we can even fix. Then, let

0
- E _ -
Cf =— [E\(—u) & (1) du and C; = {f]the null column vector of
0
dimension m/2. 0
Hence
¥ E
B)-Cl = [B-1)- &0 du— [Bily—1)- & ) du
0 y

using the properties E, of and cutting the integral into two. In this case

Ay — ) - &5 () du

- [55]-{ 1]

or developing the product, we obtain the components for each hemisphere



L) = Ex(y—u)- & () du— U?- | Ex(u—y) & (u) du

S

/
/

E
L) = /E( u)- &) du— U}

“particular” boundary conditions are then given by

- U} - /E,\ &7 () du Ly\(E) =

_ Ul /EA(u—E)- 20 (u) du

We realise then:
.+ wheny < u < E, the calculation of E\ (v — u) is stable, sincey — u < 0,
+ when 0 < u < y, the calculation of E,\(u —y) is stable, since# — y < 0.

Thus, the computation of the particular solution and the “particular” boundary
conditions given respectively by relations (57) and (59) lead to a stable

numerical problem.
Let
E
(a):JE)\(y_u). N ()duw1th0<y<E (60)
y
and
¥
() :JEA(u—y)' &7 (1) du with0 <y < E (61)
0

From equations (18), (19) and (54), i’* is then a column vector of dimension #:/
2 given by

) —%L(Z1 Z)- [%A@(tﬂl) LT () (62)

i 1<i<m/2

Thus, putting equation (62) in equations (60) and (61), we have
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HFF (a) = 1(21 72 -Int1(y) with0 <y < E (63)
11,5 4
with
(b) = %L(Z1 7Z2) - t2(y) with 0 <y < E (64)
466
where Int1(y) and Int2(y) are two column vectors of dimension /2 given by
_ E ,
Intl(y) = | Z2U) [ oo CLO(T () du (65)
L M J l1<i<my2
y
i y -
Int2(y) = | Z2U) [ i LT (w)) du (66)
L M l1<i<my2

0

and (D) <<, are the elements of the diagonal matrix D.
Finally, putting equations (63) and (64) in equation (57), the particular

solution is given by
(2~ 23) - Il ()
Lpr(y) = =Ux- (67)
120 = Z3) - Int2(y)
and “particular” boundary conditions by
1
L(0) = -U, - 1 ~(Z} = Z%) - Int1(0) and
s (68)
LA(E) = ~U} - (Zh = 22) - t2 ()

Now, we will calculate the integrals (for an index 1 <7 < m/2 fixed) given by
E

jeDf“”‘) L0(T(u)) du with 0 < y < E (69)
y
y
JeDf“’” L(T () du with 0 <y < E (70)
0

To do so, the spatial domain [0, £] is discretized (with a constant step or not)
setting



O=y<y<y2<...... < Ynt <Y1 =E. Numerical

solution
Let
E
G / P00 L0(T(u)) du with 0<j <nt (71)
j A 467
Yi
Jj
Ki = / @) LT (w)) du with1<j<nt+1 (72)
0

Then, the integrals are determined by recurrence:
Yir1
G = / PO L(T(w) du + 020G 0<j<nt—1 (73)

JYj

Vit
Kl = Ul K 4 / ) LT () du 1<j<nt (74)
Yi
LS(T(u)) is known only at points # = y; and « = y;;; on the interval [y;, ¥;11],

it is then approximated by a line on this interval, let L5 (7 («)) = a; - u + b;.
Then

Yin Yin
[ O () duz [ PO st da
Yi Yi

1 1 1 N
=D [aj'(_+yj)+bj_ (@] (5 +yjs1) + bj) - 0700

Di i
and
Vit Ji+1
L) 18 (T(w)) du = / P (gt by) du
Vi Vi
1 1

1 (v,
' [“f 01— 15) + 0= (@ (= 55) + by) - PO

D; D; D;
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3.3 Spectral discretization

We are also concerned with the spectral discretization of the equation. A is a
parameter and the system (15) must be solved for each wavelength A. For the
resolution, we took account of the contribution of all significant wavelengths
that we denote A\;1 <j < N,.Finally, we need to solve

dLy,(v)
dy

= Ay - Ly0) + &0) VISISNG  (75)

4. Coupling with conduction and results

The numerical scheme of the nonlinear heat conduction given by equations (7)
and (8) is described in Asllanaj et al. (2000). Thus, the details of this procedure
will not be repeated here. The main features of this technique are:

(1) The Kirchhoff transformation applied to the equation and the boundary
conditions.

(2) Resolution of a set of one real variable nonlinear equations.

(3) Resolution of the one-dimensional linear Laplace equation with Dirichlet
boundary conditions, by a finite difference method of order two.

The overall resolution scheme of the coupled equations, the calculation of the
integral given by equation (10) and the calculation of the derivatives which
intervene in equations (9) and (11) are also described in Asllanaj et al. (2000).

The method has been tested on a real fibrous material composed of silica
fibers. Fibers have a diameter of seven microns and are randomly oriented in
parallel planes to the boundaries. This material is the same as that in Asllanaj
et al. (2000). The application is carried out under the same conditions, that we
recall:

E=10cm medium thickness
p=20kg/m? medium density
T,=400Kand T,=300K  boundary temperature

h= %ﬂ with nt = 100 constant space mesh

m=12 angular discretization number
NX =211 spectral discretization number
e=10"° tolerance.

The present results have been compared with those obtained by the second
numerical method using the finite difference method for the resolution in space
of the RTE and with those obtained by the third method using transmission
and reflection matrices for the resolution in space of the RTE (Asllanaj et al.,
2000). Table I presents a comparison between the three numerical methods. For
each entry, three values are presented: on the right, the values for the new
method, in the center for the second and on the left for the third method. The



Numerical

Thickness Total heat flux Radiative flux Conductive flux Temperature )
(mm) (W-m™?) (W-m™?) (W m ) ®) solution
0 400.00 / 400.00 / 400.00
10 4783/ 4783/ 47.82 2045/ 2041 / 2044 27.39 / 27.42 / 27.39 391.50 / 391.47 / 391.45
20 47.83 / 47.83 / 47.81 20.06 / 20.08 / 2005 27.77 / 27.74 / 27.76 383.24 / 383.20 / 383.19
30 4783/ 4783/ 47.81 19.41 /19.39 /1940 2842/ 2843/ 2841 374.66 / 374.63 / 374.61 469
40 47.83 /1 4783 /1 47.81 1863 /1862 /1862 29.20 / 29.20 / 29.19 365.70 / 365.66 / 365.66
50 4783 /4783 /4781 17.74 /1 17.74 / 17.74 30.08 / 30.07 / 30.07 356.29 / 356.26 / 356.25
60 4783/ 47.83 / 47.81 16.78 / 1676 / 1677 31.05 / 31.06 / 31.04 346.37 / 346.35 / 346.35 Table L
70 4783/ 4783/ 47.81 15.73 /1574 / 1573 32.09 / 32.08 / 32.08 335.88 / 335.87 / 335.87 Flux variations and
80 47.83 /1 4783 /1 47.81 14.61 / 1461 / 14.60 3322 /33.21 / 33.21 324.76 / 324.76 | 324.76 temperature
90 47.83 /4883 /47.81 1331 /1331 /1331 34.51 /3452 /3450 31291 /31291 /31292 distribution within the
100 300.00 / 300.00 / 300.00 medium
results indicated show that the three methods are always in perfect agreement.
This comparison shows that the method generates reliable results. Moreover,
we have recorded computing times and the present method is approximately
six times faster than the third method. We point out that the second method
was approximately five times faster than the third method. The present method
1s therefore fastest. In addition, various tests proved that the coupled scheme is
stable.
We represent in Figures 3 and 4 respectively, the temperature field and
radiative, conductive heat flux, total heat flux, according to the position in the
medium.
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5. Discussion
In the transient state, the radiative transfer equation takes the form:

1 . aL/\(yvlufv t) + . 8L)\(y7,u’7 t)
c ot a oy

— o) -L{(T001) — o) - Ll ) +
1

/ 0Py — 1) - La(v, 1) it

w==1

N —

where ¢ denotes the radiation propagation speed in the medium (¢ =
2.997930-10° m/s) and £ is the time. For most engineering applications, the term
% . aa—L; in the equation can be neglected in comparison to the other terms because
of the large magnitude of propagation speed c¢ (see (Ozisik, 1973)). The equation

simplifies to

OL\(y, u, t ,
W % = on(p) - L3(TW, 1) — oen(p) - Lra(y, i, t)
1 1
T / osPY (' — ) - La(, ', t) dy

W==



The RTE is then quasi-stationary. In other words, time occurs in the equation
only through the emission term by the intermediary of the temperature field.
The time variable is considered merely as a parameter. The dependence of
radiation intensity in time is then implicit through the temperature. The
temperature field evolution in the transient-state will be described by the heat
equation. Hence, the resolution in the transient-state of the RTE will be the
same as in the steady-state. Finally, the method developed for the resolution of
the RTE in this paper could be used directly in the transient-state. The
principal interest of this method is that it is very fast and it can be used with a
non-uniform mesh in space without any problem, since it gives an analytical
solution in space. Let us note however that the method is valid only when the
medium has symmetry and leads to a structure of the characteristic matrix A
as in equation (20).

The further development of this study now will relate to the transient-state
with temperature boundary conditions, which vary very quickly in time and
from very intense radiative flux boundary conditions. This work will use a non-
uniform adaptive mesh.

6. Conclusion

A new resolution method of the radiative transfer equation for a non-grey
participating media with anisotropic scattering has been presented. The
resolution is based on the diagonalizing technique of the medium characteristic
matrix which made it possible to circumvent the numerical instability problem.
The method has proven to be in agreement with numerical solutions computed
by other methods. The calculations are efficient in terms of computation times
and the resolution is analytical in space. With this new model, we may now
undertake the transient-state study.

This work is the result of a collaboration between the LEMTA Laboratory
and the IECN Institute, both of the University of Nancy I, and the Isover Saint
Gobain Company. This collaboration will continue within the framework of the
transient-state study.
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